

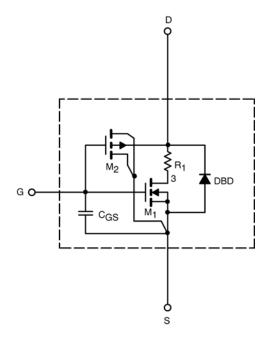
SPICE Device Model Si7664DP

Vishay Siliconix

N-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

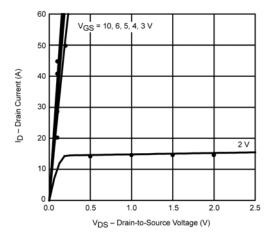
SUBCIRCUIT MODEL SCHEMATIC

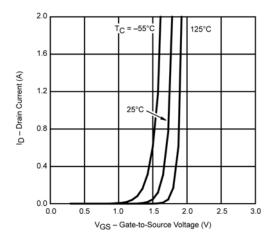
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

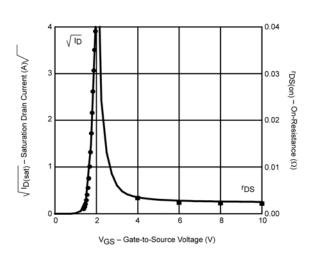
SPICE Device Model Si7664DP

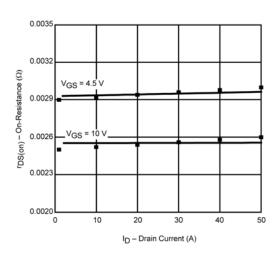
Vishay Siliconix

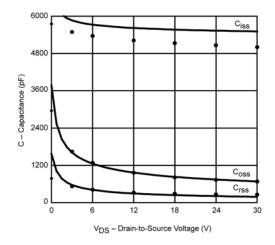
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	V_{DS} = V_{GS} , I_D = 250 μ A	1.1		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	1818		Α
Drain-Source On-State Resistance ^a		$V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$	0.0026	0.0025	Ω
	r _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$	0.0029	0.0029	
Forward Transconductance ^a	g _{fs}	$V_{DS} = 15 \text{ V}, I_{D} = 20 \text{ A}$	21	108	S
Diode Forward Voltage ^a	V _{SD}	I _S = 5 A	0.75	0.73	V
Dynamic ^b	-		•		
Total Gate Charge	Q_g	V_{DS} = 15 V, V_{GS} = 4.5 V, I_{D} = 20 A	40	38	nC
Gate-Source Charge	Q_gs		10.5	10.5	
Gate-Drain Charge	Q_{gd}		5.5	5.5	

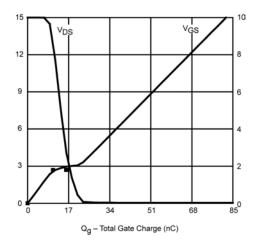

Notes


- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si7664DP Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.